
ISRAEL JOURNAL OF MATHEMATICS, Vol. 25, 1976 

D E C I D A B L E  M O D E L S  t 

BY 
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ABSTRACT 

A model 92 is decidable if Th(92, a),~A is recursive. Various results about 
decidable models are discussed. A necessary and sufficient condition for there to 
be a decidable saturated model is given. 

1. Preliminaries 

Capital Ge rma n  letters 92, ~ ,  ff will denote  relation structures with universe 

A, B, C respectively. In this paper  they will always have a countable universe 

and a countable number  of relations. Further  we shall always assume there is an 

effective enumerat ion of the universe and a fixed G6del  numbering of the 

formulas in the associated first order  language. 

A structure 92 is decidable if Th(92, a)aEA is recursive, that is, if the set of pairs 

of formulas ~ and finite sequences ~i f rom A, {~p, ti);92~ ~[~]}, is recursive. 

This is stronger than only requiring the relations to be recursive. For example,  

(to, + ,  • ) has recursive relations but it is not decidable. In some papers (e.g. [4]) 

these are distinguished as constructive and strongly constructive. Speaking more 

loosely we shall say 92 is decidable if 92 is isomorphic to a decidable structure. 

If d is a finite sequence in A then the type of ti is the set of formulas satisfied 

by ti in 92. The type is recursive if the set of G6del  numbers  of the formulas is 

recursive. A list of recursive types is a set of r.e. indices for the types. 

2. The most important  fact about decidable structures is the following well 

known result. 

THEOREM 2.1. A decidable theory has a decidable model. 

The proof  consists of noting that for decidable theories the Henkin  proof  of 

the completeness theorem is effective. Since most of the results of this paper  are 
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proved by variants of the Henkin construction we shall give a more explicit 

description of it. 

Given a consistent theory T in a countable first order language, we enlarge the 

language by adding new individual constants c,(n Eto). An enumeration 

or, (m E to) of the sentences in the enlarged language is chosen such that c, does 

not occur in orm for m _-< n. The theory T is enlarged inductively as follows: 

i) at stage 2n either or, or ---1 or. is added so as to be consistent with T and the 

sentences previously added. 

ii) if the sentence added at stage 2n has the form 3x~(x )  then ~(c.)  is added 

at stage 2n + 1. 

As is well known this defines a complete theory in the enlarged language and a 

model of T with universe {c, ; n E to}. 

If T is decidable the preceding may be done effectively and hence: 

THEOREM 2.2. T has a decidable model if and only if T has a decidable 

extension if and only if T has a decidable completion. 

3. Omitting types 

Throughout this section we will assume T is a complete decidable theory. 

By a variant of the Henkin construction one may construct models of T 

omitting any non-principal type (i.e., one not generated by a single formula) of 

finite sequence. (See, for example, [5].) By noting that this construction can be 

made effective, we have: 

THEOREM 3.1. i) For any non-principal type there is a decidable model of T 

omitting it. 
ii) For any recursive list of recursive non-principal types there is a decidable 

model of T omitting all of them. 

Note in i) that if the non-principal type is not recursive then it follows directly 

from Theorem 2.1 since no decidable model can have a non-recursive type. 

The following strengthening of 3.1 appears in Millar [3]. 

THEOREM 3.2. For every y o list of non-principal type there is a decidable 

model of T omitting all of them. 

One expects that the decidable models of T would be among the simpler ones. 

Leo Harrington [2] considered the prime model and showed: 

THEOREM 3.3. Suppose T has a prime model. A necessary and sufficient 

condition that it be decidable is that there be a recursive list of the principal types. 
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The necessity is obvious but the other direction requires a priority argument. 

Harrington also showed by example that there is: 

i) a decidable theory T with a prime model which is not decidable, and 

ii) a decidable prime model which has no recursive list of the generators of the 

principal types. 

Finally we have: 

THEOREM 3.4. If T does not have a decidable prime model then T has an 

infinite number of non-isomorphic decidable models. 

Note that we do not assume T has any prime model. 

PROOF. By Theorem 2.1 T has a decidable model 92o. If 92o is not prime it 

realizes some non-principal type po. By Theorem 3.1 there is a decidable 921 

omitting po. If 921 is not prime it realizes a non-principal type pl. There is then a 

decidable 92~ omitting po and Pl. Proceeding inductively we get an infinite 

sequence of decidable models. 

4. Theories with few models 

Throughout this section T is a complete decidable theory. 

If T is N0-categorical then by Theorem 2.1 its unique countable model is 

decidable. 

Harrington [2] proves that: 

THEOREM 4.2. If  T is Nl-categorical then all of its countable models are 

decidable. 

The following question was first raised by A. Nerode. 

If T has only a finite number of countable models, are they all decidable? 

Notice that by Theorem 3.4 the prime model will be decidable. 

I answered this question by giving an example of a theory with six countable 

models of which only the prime one was decidable. Later, Peretyat 'kin [4] gave 

an example of a theory with three models of which only the prime one was 

decidable.' By a theorem of Vaught [5] no complete theory has exactly two 

countable models. The following example of the six model case is due to 

Lachlan. 

EXAMPLE. We use the following result of recursion theory. There is a 

recursive ordering, L, of the natural numbers which has order type to + to* but 
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such that the set {n; there are only a finite number of m with mLn} is not 

recursive. 

The theory T involves two binary relations E and < and the axioms say: 

i) E is an equivalence relation, 

ii) for each 0 < n < to there is exactly one equivalence class, say c,, with 

exactly n elements, 

iii) the equivalence classes are linearly ordered by < and have order type r/ 

(the rationals), 

iv) c, < cm whenever nLm. 

The isomorphism type of a countable model is determined by the order type of 

those equivalence classes with an infinite number of cn's both above and below 

them. There are six possibilities: 1, r/, 7/+ 1, 1 + 71, 1 + r /+  1, and C~. Only the 

last of these has a decidable model for otherwise one could recursively 

determine the first half of the ordering L. 

In the above example and in the one due to Peretyat'kin the reason not all 

countable models are decidable is that there are non-recursive types. In the next 

section we consider the effect of assuming all types recursive. 

5. Consider the following four assumptions about a complete theory T: 

i) T is decidable. 

ii) Every type of finite sequence consistent with T is recursive. 

iii) There is a recursive list of the types consistent with T. 

iv) There is a decidable model realizing all types consistent with T. 

It is clear that iv) implies iii) implies ii) implies i). The example in the last 

section is a theory satisfying i) but not ii). We shall next give an example of a 

theory satisfying ii) but not iii). To do this we shall use the following fact of 

recursion theory. 

There is a closed set O C 2" such that 1) the set of non-empty neighborhoods 

is recursive, 2) every point p ~ Q is recursive, but 3) there is no recursive list of 

the points in Q. 

The theory T is now a monadic theory with monadic relations Rn (n E to) such 

that the consistent 1 types correspond to Q. 

In the next section we shall show that iii) implies iv). 

6. Saturated models 

The main theory of this paper is 

THEOI~EM 6.1. I f  there is a recursive list of all the finite types consistent with T 

then T has a decidable saturated model. 
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Note that the converse to the theorem is trivial. 

PROOF. Assume L is the recursive list of types. There is no loss of generality 

in assuming each type appears infinitely often. The proof is a modification of the 

Henkin construction involving a priority argument. So let c, and o', (n E to) be 

as in Section 2. We shall define (by induction on t) sentences O(t) where 0(0) is a 

tautology, O(2n+l)=O(2n+2)  and 0 ( 2 n + l )  is either O(2n)^cr(n) or 

0(2n)  ̂  "--1 tr(n). 

Let n = (J(n),K(n)) be some standard enumeration of pairs of natural 

numbers. 

Auxiliary to our definition of 0, we shall define, by induction on t, functions 

]:(n, t), g(n, t), X(n, t) and R (n, t). These functions will have "undef ined" among 

their possible values and we shall say " / ( n )  is undefined at time t"  to mean 

[(n, t) = undefined. 

At time t, [(n) will be defined on some finite initial segment of to, g(n) on an 

initial segment of length one longer. The values of X at time t depend on those 

of [ and g as follows: 

X(n) = ( C o , "  ", c . . -1 ,  C:~o), " ", c . . _ . )  

where m = max{J(n');  n'  < n}. 

Note that X(n)  is defined when g(n)  is and its length is independent of t. 

The values of R are requirements on 0 thus: 

R (2n) = 0 is consistent with X(n) having type L(g(n) ) ,  

R (2n + 1) - either 0 is consistent with (Co," �9 ", cj~,)_~, ct~, )) hav- 

ing type L(K(n) )  or 0 implies that for no x does 

(Co," ", cjt,)_a, x) have type L(K(n)). 

Notice that R (2n) and R (2n + 1) are defined when g(n) and ]:(n) respectively 

are defined. 

The inductive definitions of O(t) of [(n, t) and g(n, t) are as follows. 

t = 0  

t = 2n +2 O(t)= O(t -  1) 

f(n) undefined for all n 

L(g(O)) an index for T 

g(n) undefined for n ~  0 

0(0) a tautology 
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Let no = least n with f ( n, t - 1) undefined f ( n, t) = f ( n, t - 1) n ~ no f ( no, t) = 

least r such that c, does not occur in O(t) and for all m and all t' < t, f (m,  t') ~ r, 

g ( n , t ) = g ( n , t - 1 )  n g  n0+ 1. 

For n = no + 1 there are two cases; 

Case A ) f ( n o ,  t ' )=undefined for all t ' <  t then g ( n o + l , t ) =  least r such that 

O(t) satisfies R (2n). 

Case B) otherwise. Let so = last preceding value of f(no) and to least t '  with 

f(no, t ') = so. Then g(no+ 1, t) = least r > g(no+ 1, to) such that O(t) satisfies 

R(2n) .  

t = 2 n + l  

For each m if one assumes that O(t - 1) satisfies R (m, t - 1) then it is possible 

to choose g,  or --n (r, so that O(t) satisfies R(m,  t - 1). (Undefined requirements  

are assumed satisfied.) However ,  different m ' s  may require different choices. 

Choose O(t) to satisfy longest possible initial segment. 

Case I. All requirement  satisfied, f (m,  t) = f(m,  t - 1) and g(m, t) = g(m, t - 1) 

for all m. 

Case II. First requirement  violated is R (2m + 1). Then f (m' ,  t ) =  f (m ' ,  t -  1) 

for m ' < m  and f (m ' , t )=unde f i ned  for m' > m ,  g ( m ' , l ) = g ( m ' , t - 1 )  for 

m '  _-< m and g(m',  t) = undefined for m '  > m. 

Case III.  First requirement  violated is R(2m) .  Increase value of g ( m )  until 

R ( 2 m )  satisfied. Continue until reach Case I or II. 

It will be left to the reader to verify that: 

1) Since L is a recursive list the above inductions define recursive functions. 

2) For each n there is a t, such that f (n )  and g(n)  are defined and 

independent  of t for all t > t,. 

3) Hence by the requirements R(2n )  {O(t ) ; tEto}  defines the complete  

diagram of a saturated model. 

COROLLARY 6.2. If every finite type consistent with T is recursive and the 

countable saturated model is not decidable then there are an infinite number of 

non-isomorphic decidable models of T. 

PROOF. Every recursive type is realized in some decidable model. If there 

were a finite number  of decidable models realizing them all then there would be 

a recursive list of all the types. 
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7. Other results and questions 

Vaught [5] shows that no complete theory has exactly two countable models. 

Millar [3] gives an example to show 

THEOREM 7.1. There is a complete theory with exactly two decidable models. 

A natural question is to find conditions under which Vaught's result applies to 

decidable models. One such is: 

THEOREM 7.2. Suppose T is complete, not l%-categorical and every type 

consistent with T is recursive. Then T has at least three non-isomorphic decidable 

models. 

PROOF. By Theorems 3.4 and 6.2 if T has only a finite number of decidable 

models then both the prime and saturated models are decidable. Now, imitating 

Vaught's argument we can construct a model realizing a non-principal type but 

omitting some non-principal extension of that type. 

This leads to a modification of Nerode's  question. 

QUESTION. Suppose T has exactly n < to countable models and every type 

consistent with T is recursive. 

1) Is every countable model of T decidable? 

2) If not, what is the least n giving a counterexample? 

Notice that by 7.2 the answer to 2) is not three. 

Another  question is whether the results for prime and saturated models can be 

extended to homogeneous models in general. 

QUESTION. Suppose there is a recursive list of the types appearing in a 

countable homogeneous model. Is the model necessarily decidable? 

Millar [3] shows that 

THEOREM 7.3. Suppose ~ is a countable homogeneous model, L1 a ~o list of 

the types appearing in 9~ and L: a y o list of those recursive types omitted in ~.  

Then ~ is decidable. 

Notice that even for the saturated model this strengthens our Theorem 6.1. 

One final counterexample. 

THEOREM 7.4. There is a decidable T with a recursive list of the recursive 

types consistent with T but no decidable model of T is recursively saturated in the 

sense of Barwise and Schipf [1]. 
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